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A FREE ELECTRON LASER WITH A ROTATING QUADRUPOLE WIGGLER

I. Introduction

Free electron lasers, 2 are devices which are designed to produce

coherent radiation by passing a relativistic electron beam through some sort

3of spatiall7 periodic perturbation. Commonly, a periodic magnetic field,

called a wiggler, is used.

In general, the wiggler field varies transversely as well as axially.

However, in most experiments the initial beam radius, Rb is a small fraction

of the wiggler period, X and the transverse variations of the wiggler are

neglected. For example, the field of a periodic helical winding of two wires

around a drift tube to lowest order in c kw% (k 2w/1.) is comonly

represented by a simple periodic function of axial distance alone

B d[cos (kdz)ix + sin (kdz,)iy]. (1)

We provided the notation of this field with subscript "d" in order to indicate

that such a field has a dipole character.

Generally, a second field in the axial direction is added to confine the

beam of particles against their natural repulsion.

In principle, one can generate a periodic magnetic field by a helical

winding of 21 wires (1 - 1,2..). A magnetic field of this kind exhibits

helical symmetry and it is convenient to describe it by means of a scalar

potential that satisfied Laplace's equation. This potential depends only
on dimensionless coordinates a = or and u A - and has a form.

w

*t "n- I(Ap) sin tu. (2)",.=:'

Meu=mipt apoved Octob 12, 1984.

" .# . * *.. - -. . . . . . . -. . . -% ". . .. . . .. ° -.
",*.: ', '-,,%-', A.-,, "% .,-"•' ; . --. ." ' ,'. -. --.% .. " ... . .=. .- """.".".'.',,.".. ,,.:-".' "-". "-:"* ,.'



Where I is a modifled Bessel function of order t, the pitch of the helix

aw is defined by,

-kw/ t (3)V" •

and 8 is the polar angle. By definition the components of the corresponding

magnetic field can be deduced from

B grad . -(4)

* Consider now that the periodic magnetic field is generated by a helical ..

. winding of four wires as shown in Fig. I (the current flow is the same as in a

*" stellerator configuration).

We expand 12 to second order In e and from Eq. (4) we obtain

Br q -Boq kqr sin (20- kqZ)

B6  B Yrcos (26- k:)O,q oqq q

Bq -Boq 2r cos (20 - k z) (5)

*where Bo is the value of the magnetic field at r -X q/2w, and the subscript
'°- . .* . .

qz iniae tht-hBfed sq(--dr-u2pose n qa)u(5 To-. / lowstorerine,"o

. . . . (5). we ornl



B B k (y cos k z -x sin k z)
xq oq q q q

B B k (x coskz + y sin kz)yq oq q q q

zq -0. (6)

One can show that the field lines of the above magnetic field, Eqs. (6), are

similar to the line forces of a quadrupole magnet continuously rotating along

the z axis. Quadrupole fields are known in accelerator physics for their

focusing ability of the beam currents

In this paper, we investigate the feasibility of using a quadrupole

magnetic field as a wiggler in free elelctron laser devices as well as a

focusing field to confine the beam. We assume, that if b/q << 1, the actual

field can be good represented by Eqs. (6). Because of the strong focusing

property of the field, one might expect that large beam currents could stably :.

propagate. However, because the field is zero on the axis, the free electron --

laser mechanism might be weaker. Here we investigate these issues.

II. Particle Orbits and Stability Analyses

The physical model we develop will consider a relativistic non neutral

electron beam with radius Rb propagating in the quadrupole magnetic field

given by Eqs. (6). We assume that the beam is solid and has a uniform density

nb(r) - no. The expressions for the equilibrium self-electric and self-

magnetic fields associated with the beam space charge and axial current

Jb enovb (Vb-beam axial velocity) are given by, ,. ,.....,

3-:-

• .'/- / ,. ...:.... .. . . . . . . . . . . . . . . . . . .......-,-.-.. ..--......,-.-- .-... :-....-. .-.-.......-.... ,........ "-..... .- ,
... . " ** ** * .',_",_.'% .. ,. ' .,,*" _ -,_*: .g *. *. .. ', ,! 

.
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X8 0

E m 2wleln yys 0

B 2w1i 0

* and

B -2rteln0 x, (7)

ys 0ob

forOr"6 2 Y 2 )1/2 <

* where lei is the electron charge and 0b v b/c. The electron orbits within

* the beam are determined from the equations of motion

d 1 nk (x cos kt z + ysin k z)
-t x I ( SO BZYbX + vzqq q q

d 1
j*(v 20 w 0( - B b)y + v Pl k (x sin k z y ~ coo k z)t y 2zb z q q q q

d 12
dt (Y z 2 wbob(x~x + Yy + fl k It I (y cos k yz x sin k qz)

-V( x cos k z + y sin k z)] (8)
xq q

2 2
*where -4irn e /a is the beam plasma frequency and nl l eIB q/mc is the

cyclotron frequency. From the above equations and the assumption of this

*analysis (k qx (k qy) -c <G) is evident that v /vz e, and v y/ve 0,

q q.



theref ore to lowest order in c the system (8) reduces to a simple system of

equations describing the transverse motion of an electron.

2p
dv2

00

dv2
V dz k - 1 (zsin kz-yco k z)()z z 2 3y+v 0 q q q(9

d d

where y Yo 2 cofist. and B b 0 Bz const., hence, T'Mvzr

We introduce dimensionless variables; the distance is ultiplied by kq

and frequency is divided by (k c). Then the normalized Eqs. (9) have, a form
q

a (x Cos z + ysin Z) + ax

d a o(x sin z ycoosz) +Sy (0
dz

where

a 30 /(y Bk c),
q o zq

.5 w/(2yo k qc2)(

a measures the strength of the quadrupole fields and 8 measures the beam

density. Although we did not change the notation for x, yand x, one should

regard these variables as dimensionless.

* In order to solve the system of Eqs. (10) it is convenient to introduce

new variables u and v related to x and y by the following transformation

.1~* 5



x u u cos (z/2) + v sin (z12)

y - u sin (z12) - v coo (z12). (12)

In the new variables, Eqs. (10) becomes a system of homogeneous equations with

constant coefficients, namely

dU +dV (a +1+8) u -0
dz2  da 4

2d v du 1B..
dv d + ( -, +6) v0. (13)

dz2  d: 4

The solution of this system of equations has, in general, the following form

u A exp ikz

and

v B exp ik.. (14)

Inserting this solution into Eqs. (13), we obtain a system of two -

P" algebraic equations to determine the coefficients A and B. Non-triviality of

the solution of that algebraic system provides the equation for k.

(k24 + + 6)2 _ a2  k2 . (15)

The four independent solutions of the bi-quadratic equation, (15), are given

by

%. 6

............ . . ......... - - "--- --... - -"- "-"-"" dZ..e_ '"



1/2 - ''

k 2 8211/21/*s " ± 8(-) ± 1(2 -8 t1 . (16).,-'.

If one of the k. has a non-zero imaginary part the solutions (14) become

unstable. Therefore, for Im ks  0, the following conditions are required

< a < (8 + 1/4) (17a) lo

or equivalently,

2 2 2 2 32
2 2yq (2w + k c Yb 12 3 k2< 2  

(17b)
0 0"f q c -.- :

In the limit of negligibly mall self fields (8 0 0) the stability conditions

(17) become

a < 1O

Equation (17) indicates that a quadrupole magnetic field should be strong -

enough to overcome the repulsive forces due to self fields of the beam, but

not too strong.

The stable region in the parameter space a and 6 is shown in Fig. 2

between the two solid lines, a2  8 and a2 - (8 + 1/4)2 . It is convenient to

relate the parameter 8 to the beam current. The relation is

Ib/1a  8/2 (0 o)2 (kRb2
b a zo0 q b

3where I - Mc /ezy0 is the Alfven-Lawson current.

*.*.%/.* ~ .. .. . . . .. -. . . .



From Eq. (17) it follows that the theoretical maximum for 8 in the stable

2
region is determined by 6 - (8 + 1/4) and is equal to 1/4. Therefore, in

0

principle, the maximum electron beam current which is able to propagate in a

quadrupole magnetic field is

1~ y2 (k R) 2

-b 2 'a' (18) "

For example, if Yo 4, kqRbh  q q 3cm, 'b u 8.5 kA, which

require B 3.5 kG.
oq

*It is also interesting to compare the maximum beam density whichcan be

confined by a rotating quadrupole field with that which can be confined by a

uniform axial magnetic field. It is not difficult to show in the latter case

that the condition for stable orbits is

2 cZ
~2 <oc(19)

'b 2

where 11 is the cyclotron frequency in the axial field. Comparing Eq. (19)c

with Eq. (17b), it is apparent that the quadrupole field with n. n can
q c

confine four times the beam current.

III. Single Particle Analyses of a Free Electron Laser with Quadrupole Wiggler

In the previous section we investigated the stability of the electron

orbits in a relativistic electron beam propagating in a quadrupole magnetic

field, Eqs. (6). Here, we will show that such a field can be used as a

wiggler in a free electron laser device to produce coherent radiation with

2wavelength Ar  I q/2y . Henceforth, a subscript r denotes the radiation

field.

8 ,.- .. -. . .

.. . .....................................................
-, !t I ii lIII f4* k@ I* - i :,l -*l * ** * - *II I I * ".I. 1"_Ii .".I. ". 1 -- . • I II " " .u%



In our analyses we will use a single particle approach to describe the

interaction of a relativistic electron with the periodic quadrupole magnetic

field and a plane circulary polarized electromagnetic wave. This is analogous

to the calculation of Colson6 of free electron laser gain in a conventional

wiggler (Eq. (1)), oscillator configuration with a specified radiation

field. The radiation is represented by a circularly polarized electromagnetic 0

wave

E -r E 0[cos (k rz -z Wrt + 0)i1 - sin (krZ -wrt + yj
r.

B = i x E (20)-rY z -r

with ix, i and i being unit vectors in x, y and z direction, respect.ively,
y

and w - k c.

The equations of motion for the relativistic electron in the combined

electromagnetic wave (20) and pump wave (wiggler) (6) are given by

.

dedx (1 0 )+ b (2dz zy (21a)

d y = - e (1 - b (21b)
d "T d ry z zbqx

d dz - (8 (b - Pr) - 8x(b + Pr). (21c)
dTT dT- y qx ry x qy rx

As before, we kept only terms of lowest order in e and we introduced

normalized variables. We also denoted

i =raCOS (i(z - T) + *)ix - sin (K(z - ') + (22)

9

i~~~~~~~~~~~~~~~....,..... .......... .,.. . .... ........-.-..-..... .. .. .-...................... ....-... .... -... ,,, . [%-[



-. -. -. O.o -.-.

b = bql(y cos z x siln z)i + (x cos z + y siln Ziyj (23)

where 
.

era - ielEo/(mckqC)

b fn1(kqc) (24)qa q q

and K k r/kq (k qc)t x, y and z are also dimensionless (note 
that

2
K 2Y 1).

0

The orbit equations (21) describing the motion transverse and parallel to

the electron stream are coupled, due to the x and y dependence of the pump

field. This fact makes direct integration difficult, even making a linear

approximation. The principal complication is that the orbit has two very

different frequencies, a forced oscillation at the doppler shifted pump or

radiation frequency, and a slower evolution at the beat frequency. To proceed

we will average over the fast oscillation and calculate the motion only on the

slow time scale.

IV. Multiple-Time Scale Analyses

In order to find the solution of the set of the nonlinear coupled

equation (21), we will utilize multiple-time scale analyses.7  This gives the

same result as a similar derivation making use of the covariant structure of

8
the equations of motion. We introduce two time scales, one fast - T

another slow - r., The fast time scale T is associated with the pump field
0

"frequency" 1 ( , and the slow time scale T1 is proportional to kv
kq )qi'

which in turn is proportional to 11 and (.e Also, in the slow
q (I. 0 )

10: :?:?i'?:S

• - oO.. -. - %' . . . * . • .- f 0 " ° "e " *.°. .% .. " •" ,o. f . . o. ' .- ." o% .% . -. ' . - ° . . " -f - " •."* ° o.- .. o.° " ..' ° .-
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time equations we retain as a low frequency term the beat frequency

4) r (k r + kq )v.

We assume that variations on fast time scale are periodic, and both

variables T and T1 are treated as independent variables. To introduce the

difference between fast and slow time scales we consider a formal procedure

consisting of assuming a perturbation expansion of the form

X('r ) + X('ror 1 + x C( o ,'T) + "..

and

d a a
d- + - (25)dt 3r a1

T0 + 1T-

from which follows

d2  a2  a2 a2.
+ 2

0 1

where we denoted the order of the quantities with a subscript o,1,..., hence

x and -, x, and and x and are zero, first, and second order

quantities, respectively. 1

Substituting Eqs. (25) into Eqs. (21) for zero order equations we obtain

S ax~
TY 0 " 3T __

0 0

__ ay~
a 01--. o 1 0.

0 0

o'o0 . (26),"--

11 "";

T".... Y.. 7
" .~~~ ~ 0.%... ,%% , .. ,..:......•..o . .,, ." .".. ..... .- .. ,..° .%' . .,.



The solutions to Eqs. (26) are

Y0 (r,,r) - (

z0 (-r ,,T0 )-zo ) + ( 8(T )T (27)

where 3z /ar (T and 3X -a ayo/ar - 0, since we assumed that zero
o0 80(r0)0

order transverse motion doesn't exist. The quantity 0 (T) as expressed in

Eq. (27) Is undefined because any velocity which is nearly equal to the

particle velocity will render z 0(-I and 00(r1 slowly varying functions of

* time. To be more specific, we define B (T - / in terms of the resonant
0 01  /

velocity, so that

v M (28)
r q

*Since no quantity on the right-hand side of Eq. (28) depends on time, 0~ (T

is independent of Tie We will nov show that this is consistent.

*The first order part for Eq. (21c) is given by

az1  az
7-(y -) +-y )+(B )+- 0-). (29)

a~ o0  O T1 0 0 t 0  1o 0 Da0 t1I

Upon averaging over the fast time scale we have,

aT (YB0) -0. (0

12



Note that y depends only on S therefore Eq. (30) requires

0 0

B(T) const.

Thus our assumption that 0 is independent Of TI is consistent. Making use of

this fact we return to Eq. (29) and integrate it once in * The resulting

equation is given by

Yo (3z + + So C(r (31)

where C(T) is a constant of the integration.

Expanding Y to the first order and utilizing Eq. (27), we find that

3Z 3 Z

1 0 0 0 a+ (32)

Substituting it into Eq. (31) we obtain

3zI 3z0  C(T1)
+ 0. (33)

3 3-a? 3
o 1 T0

The last two terms do not depend on therefore by averaging Eq. (33) over

T we obtain
0

a°  C(T1)

0.

1 To- 0

Substituing t ret bairstoe Eq. (33) weind that7,wefndtat.

09

13

-S.'.%



follows, that

Y (T y3 o B (TI) (34)
I1 0 0 z'i 1

whereaz /3T = ()

Consider now the first order transverse motion. The left-hand side of .. 
"

the Eq. (21a) becomes

axax ax aat- o i-7 + -iF o i-T + Ti ) + -T- o at L
0 0 0 1y 0 0 a0TO T T To 37 0 3T

U-•.

Since xo does not depend on T0o the above expression reduces to

axao Yo I ' (35a)
fTo 0

and correspondingly, for left-hand side of Eq. (21b)

aya Yo (35b)
0 0

The radiation and wiggler field expressions have the following form

re -e [Cos ( 0  -I)To + ZoJ +

-sin -K(O 1) r + zJ + 01i , (36)
0 0

14

* . - - .

S. ' **-. *. . . . . .. . - . o * . o..



b -b Hy Cos (z +8?) -x sin (z + 8 P)i-q1 qa 0 0 0 0 0 0 0 0 x

+ [xCos (z + 8 T + y sin (z + 0 T Pij (37)0 0 0 0 0 0 0 0 3?

Combining Eqs. (21), (35)-(37) we obtain first order equations for the

transverse motion

2
a x e1 ra /-)

-2 -( 0 ~ Cos tc LIC0. OT 0 + z 0 p+
3T y 0

0

+ qa IxCos (z + )+y YoSin (z0 +0Tl .(38)
y 00 0 0

00

and

erae-- ( -0l 0 

a?2 sinc( -1)? + lz +

- a 00 ly Cosn (a + 0 T)x sin (z + 0 T-)]. (39)
YO 0 0 0 00 0 0 0

Integrating Eqs. (38) -(39) one finds

x 1(rTr1  77-(1 2 Cos I cl(So 1)T 0 + z 0 + *

b---n tx COB (Z +8?) + y sin (ZO + ST) (40)
y 0 0 0 0 0 0

0 0

.** % %.%Tl 0 I) + z
1.k. -2I sin tic( (00



.. .. .... -.. . . . . . . . . . . . .

'..-; ;' .

The dependence of the right-hand side on T 1 is through z o which is a function

of Tie We proceed with the multi-time expansion procedure. To do so, w

write the second order equations for Eqs. (21). The expressions for the

wiggler field, evaluated along the first order orbit, and therefore correct to

second order are given by

bqx =bqa[Yo cos (zo + ) Y COS (z + oT o ) -zly ° sin (z° + oT o )

- sin (z + oT) x sin (z o + o) - zx o cos (z o + 0T (42)

b = bqX cos (z + 6o o + x I co (z + o o) - zlx sin (z + a .qy qao 0 0 0 + 1co 0 0 0 1l0 0 0 0

+ YO sin (z + 1 o o) + yl sin (z o + oT o ) + zly o cos (z o + 0oTo)J. (43)

However, we are interested in deriving equations governing the particle motion -

* on the slow time scale Tie Therefore w perform an average over the fast time

scale. We denote this averaging process by < > brackets, for example, Eq.

(20a) becomes

< (' Y 3x,"2x}> _<Jerx (I -z)j2> + <( 0zbqy)2 > (44)

3r~~~~~ 22 l 1B+.(4For the left-hand side of Eq. (44) after averaging w obtain (32 x 2)

, Thus the second order equation becomes

2- 2~x 0"--.,

-0 <0 zBl(e rx,l + bqyl)> - <erx,2> + 0o <e rx,2 + bqy,2>" (45)
3T

16

..



Inserting Eq. (43) into Eq. (45), using the fact, that Rz and zI do not

depend on T and the assumption, that 3erx /3x o - ase ry yo  0, we obtain
rxx o- ry o

2

y 0 0Bb <x coo (z +8 0 + Y sin (Z +8 0 )> (46)
0o qa 1 0 0 0 0 0 0

Analogous to Eq. (46) we can write an equation for the y-component

2

o 2 obqa <x sin (z0 + SOT O )  y, cos (z +OTO)> (47)
0: .T,2 0 'i

Making use of the expressions for x, and Yl (Eqs. (40)-(41)) and averaging

over the fast time scale we obtain

2b 2  -
a e bb;)2o  rabq g)o +, _ q& xo

- r2 q os I (c + 0Z -[. x

12 2 0 ,~2 o

b 2
rag a sin [(,+ 0 : + *1 - - Yo (48)

2 2
1 YO I

0Y

In writing Eqs. (48), we have utilized the resonance condition, Eq. (28),

which here is expressed as 00 - ,/(i + 1). Consider now the second order

equation for Eq. (21c). The left-hand side of Eq. (21c) after averaging

becomes yo(30z/3r1 ), here we also used relation (34). Thus we can write,

that

233 0
--r, <0 (xe 0 (bqy + e ,)>. (49)

0o ;12 <y,1 bqy, l Cry,1 l) 1 - ~ ~qy,l erx, l1 +9 .~

To obtain the expressions for Oyo and Bx,i we differentiate Eqs. (40)-(41),

respectively. Then utilizing Eqs. (36)-(37) and averaging over the fast time

17
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scale we obtain the z-component of the equation of motion on the slow time

scale, namely

2 .
3 0 eraab.-;-Yo- "Yq IYo cod 16C + I)zo + --:-"
3 T 2  y0Bo 0  cos(:1)-

- sin t(IC + 1): + *j}. (50)

(Recall that zo is not the unperturbed orbit, but is the orbit minus the

resonant velocity times time, see Eq. (27).) .

Denoting

e b
a _. 

.

To0e-ab a

z o 4
b

a 2  
-~(51)

Too-

the final set of equations of motion on the slow time scale is

d2x 2
d a co (P + 0 + a 2 x (52a)

22
" a sin t(ic + 1)%+Oj -ay (52b)

dT 2

d - aa{y cos O(K + 1): + " x sin I(K + 1) +4 . (52c)

dT 
.2..z
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For convenience, we have dropped the subscripts o and 1, since for the

following analyses we will use only the Eqs. (52). When necessary we will
S

return to the original notation.

V. Linear Analyses

In order to solve the non-linear coupled system of Eqs. (52) we will

employ a perturbation analysis. We assume that Eo (a, az) is small and the

electron displacement and energy change can be expanded in powers of E0.

For convenience of the analysis we introduce a complex variable

- x + iy, in which case Eqs. (52) become,

d2  a exp (iX) - a 2 (53)

2 a
d z z

2 z exp (- iX) - Cexp (iX)J (54)d 2 21

where x (K + 1)z + E CZ + *and 9 is the complex conjugate of C. The

equations to zero order in the radiation field are

d2 (0)  (o)

dTd2 (0)- ,.

d2(o)
-0. (55)

d'r

The general solution of the first, harmonic oscillator, equation is given by

(o) e i(Qr + 8) -i(ar + _) (56)
+ + pe (6

where the real quantities P+, , 8+ and e are obtained from the initial

19
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conditions. In Appendix A we derive these quantities in terms of the

parameters describing the injection of the electron beam into the wiggler

field. The oscillation corresponds to betatron oscillations in the strong

focusing wiggler field.

The solution of the second equation in (55) is
0

(o) + (a1 - (57)

where zt and 0, are the position of the electron along the z axis and its

velocity at the moment (T 0 0) of entering the interaction region, "

respectively. (Recall that z(o) in Eq. (57) varies slowly in T. The actual

fast variation is obtained by adding a (B0 T) to z

We denote

0

using the resonance condition we can reexpress

AW=r - (k + kq)vi.
r r q

Thus the zero order expression for X becomes

+ 0 0 Wi (58)

where o Kz +

0

We now calculate 9 to first order in E 0  It obeys a forced oscillator

equation with C) - dtl)/dT = 0 at T - 0 as initial conditions, so it has a

20
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-.7

form

-+ +

(1) . a exp (iso)I(c+a)fexp (iwT) 1 + (iaT)

2 a exp iT)f (59)

where a a Aw.

The first order expression for z is obtained by integrating Eq. (54) with

S=(o) and X (°) the result is given by

(1) a {2-- [sin (ao + + 0_) sin (9 + 0 ) -a+T COS (e + 0)J

P++

- --.± Lsin (ct - o + 8 ) - sin (8+ - 4) - a_ COS (e -. )J1• (60)

The equation for the second order term in the expansion of z

2 (2) a () ()).)
d z

=T 2 j~z(1)t: ( °) exp - iX( )) + E( )* exp (iX(°))]
dT2  (i)+))0

+ 
1

1) exp (- ixe)) - x(1)* exp (iX(o))]I (61)

The first two terms on the right-hand side are similar to those of a

conventional free electron laser, in that only zero order transverse motion in

the wiggler comes into play. However, the frequency of this term is shifted

due to the betatron oscillations of the electrons. The second two terms on

the right-hand side have no analog in the standard one-dimensional treatments.

They describe a resonant beating of the first order transverse oscillation

with longitudinal motion. These last two terms on the right-hand side of Eq.

21
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(61) after inserting Eqs. (58)-(59) will take the following form

a a
z (a sin a+' - a sin a T).

2ao+a - + 't

I Inserting Eqs. (58) and (60) into the first two terms in the right-hand side

of Eqs. (61) will result in an expression which will include terms dependent
on 0 0 We assume that particles are injected uniformly in z, so that an

average over 4 can be done. Thus, the average expression for the right-hand
0S

side is given by

2-az oo 1 1 -

2 (-2- -2. sin (2aT + 8+ + R-)
a a+

- t+cos (aT + 8+) +P_ cos (aT + _)J

[L+ 

'

(sin 6+ + CT CoS -2 (Sin +..+ a o COs S
2

+ [P+ sin (ar + 8+) -p sin (aMr + _)"

C(cos e+ - + +-2 (cos e_ -aT sin A_)Jo

2 ++ +liiil '

At that point we introduce an additional assumption by taking p_" 0,

this simplifies the last expression considerably. In Appendix A we show that

this assumption represents initial conditions for an electron whose

cylindrical radius remains constant in time and rotates in azimuthal angle

with angular velocity a. An analysis utilizing more general initial

conditions will be performed in the future.

Thus Eq. (61) reduces to the following

22
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2z(2) a2 -2
d z - ac+ 2(sin a T- a T COS aT)
d 2  2c-

aa sin a+T sin C_ (6+ Z- + _ ! (62) --.:

a+

Integrating Eq. (62) once we obtain
9

(2) aza -cos a+T -cos aT
za= [ 2 2

a+ a+
2-2azKP+ 1

+ ( - o _- 2 _ sin aT). (63)

VI. Single Pass Gain Calculation

6Following the usual procedure the gain G(t) is defined by

SYYr)e (64)G(t) - "Yi ic 2 V

o

where V is the volume of a section of the beam with number density ne,

- 2
y(T)mc is the average over 0 of the electron energy.

The averaging of y - y + Y  )+ Y + .. over t eliminates the first

order contribution in (64), therefore inserting Eq. (63) into y2)- =3 (2)

and the result into Eq. (64) yields the following expression for the gain

4e 3 2 aa (1-cosaoT) (1-cosa +T)
G(r) - 2 yomc of . 2 2

E- a - a+

2--2

--:- - 1 c (ci )sin a rI (65)

Utilizing the definitions for a, a, a and 6 we obtain
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a - 0 (1-cosa T) (1-coso + T)

{8 ar ( )2  ( )2

2 {pf2 (1 -Cosa T a~ aT sinci'r)/(aT) 3 1 (66)

where

G('r) -G(T)/r4(-4) *2 (amT) 31.

We denote the first curly bracket in Eq. (66) Gb(T) and the second G0 (T), thus
ab P

G - G b+ G P The expression for G P(T) is similar to the formula for gain

*obtained in single particle analyses with a dipole wiggler (see Eq. (16) in

* Ref. (6)). The main difference is that the resonance is at Awd a instead

- of Aw -0.* Thus the beat frequency resonates with the betatron frequency.

*Had we chosen instead the other initialization, p_* 0, p+~ 0, p *0, the

* particles would rotate in the opposite sense and the resonant condition would

have been Aw -- a. Gb is an additional term associated with the transverse

bunching in the FEL with a quadrupole wiggler, however it is smaller in

magnitude than G r. In Fig. 3 we show the (G /0) as a function of (a T)p~ b0

for different ar and in Fig. 4 we present /P 2,2 as a function of (_)

A plot of the normalized gain is shown in Fig. 5. The maximum of G (0)

* appears at a T 2.6 and is given by,

G 0O.27 ( P4a ar 3 pY~)
P'max a

00

* is the interaction region length, the maximum gain is given by

42 X 2wR
G 0.27 (eB n A) ) q2 (67)max oq aq Yov 2 q
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where N - L/q is the number of wiggler periods in the interaction region.
q

From Eq. (67) we see that Ga x for an FEL with a quadrupole pump has the

same functional dependence as an FEL with a dipole pump, provided BodW B oq(k q).

Conclusions

We have shown that relativistic electron trajectories in a rotating

quadrupole periodic magnetic field are stable even if large space charge

forces are present. This is not the case for the electron trajectories in a

dipole periodic magnetic field. In the last case to improve the stability a

constant magnetic field is introduced in addition to the periodic field. S

However, analyses have shown that the orbits are not stable for all initial

conditions.9 "10  In the case of a quadrupole field the stability conditions

and the theoretical maximum value for the electron beam current depends on the

beam energy, density and radius and, in principle, can be close to the Alfven-

Lawson limiting current.

The linear, low gain analysis indicated that by utilizing a quadrupole

periodic magnetic field as a wiggler in an FEL we obtain a positive gain. The

maximum value of this gain has the same parametric dependence as for an FEL

operating with the usual dipole wiggler, provided the same value of the

amplitude of magnetic field at the beam position can be produced.

Therefore, an FEL with rotating quadrupole pump represents an interesting

new concept to obtain high-power, coherent radiation in the millimeter and

sub-millimeter regime.

In a future work we will investigate the feasibility of such devices by

performing single-particle nonlinear analyses in Compton regime and an

analysis of the device in Raman regime.
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0.18-

-0.14
a2

0.1 STABLE
REGION

0.06

0.02

0.02 0.06 0.1 0.14 0.18 0.22

Fig. 2 Shows the stability region, where the upper line is a2, (8 + 1/4) 2

and the lower line is a 2 - ,where a - (Al /Y k C) is normalized
q oq

strength of the wiggler field and 8 w a/(2y B k C )is normalized

beam plasma oscillations.
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Fig. 3 Presents the dependence of (G /0 )on b CA),weeGI
b 0 b~~-wr~hrGi

the normalized gain produced by transverse bunching and Aw - - cOI.

The solid, dashed-dotted and dotted lines shows Gb as a function of

aT for *T 10, 20 and 30, respecively.
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Fig. 4 Presents the dependence of (a%/0 To on aT, where G.Is the

normalized gain produced by longitudinal bunching and p +is the

normalized beam radius.

29



ar=20
30-

e+= 0.25

10-

0

-10 9

-20-

-30-

-40 x1 0 3  ...

-20 -10 0 10 20 30 40 50 60 70
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Appendix A

We are interested in relating the parameters p+, o_., 0+ and 8e in Eq.

(56) with the initial conditions of the electron beam injected into quadrupole

periodic magnetic field. Electron position is described in cylindrical

coordinates by its radius R and angle 6, radial velocity Vr and angularI. r
velocity V6. From Eq. (56) follows that

o () P+cosO6 +-cos8O Rncos .

S(o)~(0) -P~sinO+ - sin8 - R sin 6

(A-1)

V 0 -a(p~sinO+ + P-sin6-) V VRcos6 VsinO

y (o) 0 O cos8+- P-cos6- )iV inO + Vcose

then

go cos6 1 ((R + LO) cos6 + !R sinel

VV
Pcos6_ - 2[(R a - cos6 - asine 1

(A-2)

psine 4 ~ (1 B sine - coseJ

V V
go sine - - I [(R - 2) sine + -~cosejo

2aa

Introduce a following notation
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1 1

~- U sin*~ (A-3) -

and

a 2 2

U Usin*2  (A-4)

from (A-2) we obtain

P4-cose4  U1 Cos (0 +4

+0

P4-sin84 -.+ U1 sin (8 +

(A-5)

P-cos8- - U~ U2 CoB (89 +*2) 
-

Psint ~ U2 sin (86 *2)

with constraint

U2 sin 2 -U 1  sin 'tie (A-6)

Thus we cAn express P4 , P_, 0+ and 0_ in terms of R, e, VR and *j namely from

(A-5) follows -A
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- 2U1

- 2

*~ (-7)

e+

For example, if V- 0 then UI2 -0, therefore -0, *w, *.. In this case

*p -0, V8e aR, P.+ R and 0+ -8, which are the conditions for an electron

orbit with constant radius. -
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